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Walsh transform

p a prime , ζp = exp
(

2iπ
p

)
Vn : an n-dimensional vector space over Zp

a · x : any inner product on Vn

DEFINITION

The Walsh transform of f : Vn → Zp at a ∈ Vn is

χ̂f (a) =
∑
x∈Vn

ζ
f (x)−a·x
p

REMARK

When p = 2, ζ2 = −1
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Plateaued functions

DEFINITION

A function f : Vn → Zp is called a plateaued function if the Walsh
transform χ̂f takes at most three values.

Facts :
Because of Parseval identify, |χ̂f (a)| ∈ {0, p

n+r
2 } for some

nonnegative integer r.

r = 0→ |χ̂f (a)| = p
n
2 : bent functions

p = 2, r = 1, n odd→ |χ̂f (a)| ∈ {0, 2
n+1

2 } : semi-bent functions

The power p
n+r

2 is called the amplitude of f .

+ Characterizations of plateaued functions : Carlet-Prouff 2003,
Cesmelioglu-Meidl 2013, SM 2014, Carlet 2015, Hyun- Lee-Lee
2016, Carlet-SM-Ozbudak-Sinak 2017, etc.
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Generalized plateaued functions

ζpk = exp
(

2iπ
pk

)
, k a positive integer

DEFINITION

Let r be an nonnegative integer. A function f : Vn → Zpk is called a

generalized plateaued function with amplitude p
n+r

2 if the generalized
Walsh transform

Hf (a) =
∑
x∈Vn

ζ
f (x)
pk ζ−a·x

p

has modulus 0 or p
n+r

2 for all a ∈ Vn.

REMARK

r = 0 : generalized bent functions introduced by Kumar, Scholtz and
Welch
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Example

Let f be a function from Z2k+1
2 = Zk

2 × Zk+1
2 to Z2k+1 , defined as

f (x, y) = (

k∑
i=1

xiyi + yk+1) · 2k +

k∑
i=1

yi2i−1,

where x = (x1, · · · , xk) ∈ Zk
2 and y = (y1, · · · , yk+1) ∈ Zk+1

2 . Then for any
u = (u1, · · · , uk) ∈ Zk

2 and v = (v1, · · · , vk+1) ∈ Zk+1
2 , one has

|Hf (u, v)| =

{
2

(2k+1)+1
2 if vk+1 = 1,

0 if vk+1 = 0.

f is generalized plateaued with amplitude 2
(2k+1)+1

2
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Notation

There is an one-to-one correspondence between Zpk and Zk
p :

Every u ∈ Zpk can be uniquely expressed in the form

u =

k∑
i=1

uipi−1, ui ∈ Z.p

ui shall be called the ith-digit of u in the p-base representation of u.

In the sequel, we shall often use the same notation to denote an
element u of Zpk and the sequence u = (u1, . . . , uk) of its digits.
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Component functions

Given a Zpk -valued function f , define

fc = fk +
k−1∑
i=1

cifi, c = (c1, . . . , ck−1) ∈ Zk−1
p .

fc : a component function of f ;

fi : ith-digit of f .

When p = 2, if f is a generalized bent function from Vn to Zpk :

THEOREM (MARTINSEN, MEIDL, STANICA)

If n is even then fc is bent for all c ∈ Zk
p .

THEOREM (MARTINSEN, MEIDL, SM, STANICA)

If n is odd then fc is semi-bent for all c ∈ Zk
p .
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Component functions of a generalized plateaued
function

THEOREM

If f : Vn → Zpk is a generalized plateaued function with amplitude p
n+r

2

then :
1 if p is odd or if p = 2 and n + r is even, fc is plateaued with

amplitude p
n+r

2

2 if p = 2, n+ r is odd and k ≥ 3, fc is plateaued with amplitude 2
n+r+1

2

REMARK

For r = 0 and p odd (generalized bent functions), it has been also
established independently by Wang, Wu and Liu.
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Sketch of proof

k a positive integer
A basis of the vectorspace Q(ζpk) over K := Q(ζp) is
{ζu

pk , 0 ≤ u ≤ pk−1 − 1}.

The (unique) decomposition of a Walsh coefficient over this basis is :

Hf (a) =
∑
x∈Vn

ζ
f (x)
pk ζ−a·x

p =
∑

u∈Zk−1
p

ζu
pk

∑
x∈Wu

ζ
fk(x)−a·x
p ∈ Q(ζpk)

where Wu = {x ∈ Vn | f1(x) = u1, . . . , fk−1(x) = uk−1}.

On the other hand,

χ̂fc(a) =
∑
x∈Vn

ζ
fc(x)−a·x
p =

∑
u∈Zk−1

p

ζc·u
p

∑
x∈Wu

ζ
fk(x)−a·x
p

The two above decompositions of Hf (a) and χ̂fc(a) involve the
same sums Su(a) =

∑
x∈Wu

ζ
fk(x)−a·x
p ∈ Q(ζp)
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Sketch of proof

p? =
(
−1
p

)
p where

( ·
·
)

denotes the Legendre symbol.

If p = 2, k ≥ 3 otherwise k a positive integer

THEOREM (REGULARITY OF GENERALIZED PLATEAUED FUNCTIONS)
Let f : Vn → Zpk be a generalized plateaued function with amplitude

p
n+r

2 . Then, for every a ∈ Vn,

Hf (a) = ε(a)
√

p?
n+r

ζ
g(a)
pk ζ

h(a)
p

for some ε : Vn → {−1, 0, 1}, g : Vn → Zpk−1 and h : Vn → Zp .

REMARK

When p = 2, p? =
(−1

2

)
2 = 2.
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Sketch of proof

In summary,

Su(a) =
∑
x∈Wu

ζ
fk(x)−a·x
p ∈ Q(ζp) =: K

Hf (a) =
∑

u∈Zk−1
p

ζu
pk Su(a) = ε(a)

(√
p?
)n+r

ζ
g(a)
pk ζ

h(a)
p ,

The decomposition of ν := (
√

p?)n+r over the basis
{ζu

pk , 0 ≤ u ≤ pk−1 − 1} depends on the parity of p and n + r :

1 when p is odd : Q(
√

p?) ⊂ Q(ζp)⇒ ν ∈ K.
2 When p = 2 : ζ2 = −1 and K = Q(ζ2) = Q.

In that case, one has therefore to separate the two subcases :

(a) n + r even : ν =
√

p?n+r
= 2

n+r
2 ∈ K

(b) n + r odd :
√

p?n+r
= 2

n+r−1
2
√

2 = 2
n+r−1

2

(
ζ2k−3

2k − ζ3·2k−3

2k

)
∈ Q(ζ2k) \ K
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Sketch of proof

p odd or n + r even, k ≥ 3 if p = 2 (Cases 1 or 2a)∑
u∈Zk−1

p

ζu
pk

∑
x∈Wu

ζ
fk(x)−a·x
p = ε(a)

√
p?

n+r
ζ

g(a)
pk ζ

h(a)
p ,

√
p? ∈ Q(ζp)

Hence

Su(a) =
∑
x∈Wu

ζ
fk(x)−a·x
p =

{
ε(a)
√

p?n+r
ζ

h(a)
p if u = g(a)

0 otherwise

Thus

χ̂fc(a) =
∑

u∈Zk−1
p

ζu·c
p Su(a) = Sg(a)(a)ζ

g(a)·c
p

fc is plateaued with amplitude p
n+r

2
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Sketch of proof

p = 2, n + r odd and k ≥ 3 (Case 2b)

∑
u∈Zk−1

2

ζu
2k

∑
x∈Wu

(−1)fk(x)−a·x = ε(a)2
n+r−1

2 (−1)h(a)
(
ζ

g(a)+2k−3

2k − ζg(a)+3·2k−3

2k

)

Hence

Su(a) =
∑
x∈Wu

(−1)fk(x)−a·x =


ε(a)2

n+r−1
2 (−1)h(a) if u = g(a) + 2k−3

−ε(a)2
n+r−1

2 (−1)h(a) if u = g(a) + 3 · 2k−3

0 otherwise

Thus

χ̂fc(a) = (−1)(g(a)+2k−3)·cSg(a)+2k−3(a)− (−1)(g(a)+3·2k−3)·cSg(a)+3·2k−3(a).

fc is plateaued with amplitude 2× 2
n+r−1

2 = 2
n+r+1

2
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Sketch of proof
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Question

Let f be a function from Vn to Zpk where p odd or p = 2 and n + r even

Question : if all the fc’s are plateaued with the same amplitude, is f a
generalized plateaued function ?

Answer : it is NOT necessary true

Generalized bent function : r = 0
When p = 2, various characterizations involving the fc’s have been
found

k = 2 : Solé, Tokereva (2009)
k = 3 : Stanica et al (2013)
k a positive integer : Hodzic, Pasalic (2016), Tang, Qi, Xiang, Feng
(2016)

Each of them require an additional statement on the fc’s.
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An important remark

Let f be a generalized plateaued function from Vn to Zpk

Cases 1 and 2a : p be odd or n + r be even

We have proved that all the component functions fc of f have all the
same amplitude but above we have shown that

LEMMA

For all a ∈ Vn, c ∈ Zk−1
p and d ∈ Zk−1

p , we have

|χ̂fc(a)| = |χ̂fd(a)|
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An important remark

Let f be a generalized plateaued function from Vn to Zpk

Cases 1 and 2a : one can extend all the preceding results and show
that

THEOREM

For all H ∈ Zp [X1, . . . ,Xk−1], fH = fk + H(f1, . . . , fk−1) is plateaued with
amplitude p

n+r
2 and, for all a in Vn, H1 ,H2 in Zp [X1, . . . ,Xk], we have :

|χ̂fH1
(a)| = |χ̂fH2

(a)|.

REMARK

fc = fH with H(x1, . . . , xk−1) =

k−1∑
i=1

cixi
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Admissible (plateaued) functions

From now, suppose p is odd or p = 2 and n + r is even.

Let P = {P1, . . . ,Pt} be a partition of Vn :
⋃t

i=1 Pi = Zn
p , Pi ∩ Pj = ∅,

i 6= j.

A function g : Vn → Zp is said to be piecewise constant over P if it
locally constant on each element of P.

DEFINITION

Let f : Vn → Zp . Then, f is said to be r-admissible for P if and only if,
for every piecewise constant function g : Vn → Zp over P, f + g is
plateaued with amplitude p

n+r
2 and |χ̂f (a)| = |χ̂f+g(a)| for all a ∈ Vn.
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Example

Let f be a function from Z2k+1
2 = Zk

2 × Zk+1
2 to Z2, defined as

f (x, y) =
k∑

i=1

xiyi + yk+1,

where x = (x1, · · · , xk) ∈ Zk
2 and y = (y1, · · · , yk+1) ∈ Zk+1

2 . Let
P = {P{y1,...,yk} : (y1, · · · , yk) ∈ Zk

2}, where
P{y1,...,yk} = {(x, y1, · · · , yk, yk+1) ∈ Z2k+1

2 : x ∈ Zk
2, yk+1 ∈ Z2}. Then f is

1-admissible for P.

32 / 45



Admissible (plateaued) functions

Let f : Vn → Zp be a r-admissible function for a partition
P = {P1, . . . ,Pt} of Vn.

Define
Si(a) =

∑
x∈Pi

ζ
f (x)−a·x
p

PROPOSITION

For every 1 ≤ i < j ≤ t and a ∈ Vn, Si(a)Sj(a) = 0

REMARK

The proof relies strongly on the fact that |χ̂f (a)| = |χ̂f+g(a)| for all
a ∈ Vn for every piecewise constant function g : Vn → Zp over P.
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Characterization of generalized plateaued function

Let k a positive integer
Let f : Vn → Zpk and fi denotes the ith-digit of f

Let us construct a particular partition of Zn
p involving the (k − 1)st digits

of f :

Pa =

k−1⋂
i=1

f−1
i (ai)

and
Pf1,...,fk−1 = {Pa, a ∈ Zk−1

p }.
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Characterization of generalized plateaued function

In that case, every function g which piecewise constant for P can
be expressed in the form g(x) = H(f1(x), . . . , fk−1(x)) for some H ∈
Zp [X1, . . . ,Xk−1] and the preceding proposition rewrites as follows :

PROPOSITION

For all a ∈ Vn and (u, v) ∈
(
Zk−1

p
)2, Su(a)Sv(a) = 0 where

Su(a) =
∑
x∈Wu

ζ f (x)−a·x.
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Characterization of generalized plateaued function

Thanks to this result, one can establish the following characterization :

THEOREM

Let f : Vn → Zpk . Then, f is a generalized plateaued function with

amplitude p
n+r

2 if and only if fk is r-admissible with respect to Pf1,...,fk−1 .
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Admissible (bent) functions

0-admissible→ bent functions

In that case, the equality |χ̂f (a)| = |χ̂f+g(a)| of the modulus of Walsh
coefficients is always true and the definition rewrites

DEFINITION

Let f : Vn → Zp . Then, f is said to be 0-admissible for P if and only if,
for every piecewise constant function g : Vn → Zp over P, f + g is bent.

Thus, the preceding characterization rewrites for generalized bent
functions as follows :

COROLLARY

Let f : Vn → Zpk . Then, f is a generalized bent function if and only if
fk + F(f1, . . . , fk−1) is bent for all F ∈ Zp [X1, . . . ,Xk−1].
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Case 2b

Let f : Vn → Zpk be a generalized bent function with amplitude 2
n+r

2

Let r be a nonnegative integer
Case 2b : p = 2 and n + r odd

In that case, a component function fc is plateaued with amplitude 2
n+r+1

2

The preceding notion of admissible functions can not be simply
adapted since, one may have for some a ∈ Vn and (c, d) ∈ Zk−1

p :

|χ̂fc(a)| 6= |χ̂fd(a)|

The preceding characterization of generalized plateaued function
when p is odd or n + r is even relies strongly on the fact that
|χ̂fc(a)| = |χ̂fd(a)| for all a, c and d.
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Generalized plateaued functions from other ones

Let f : Vn → Zpk

Suppose p is odd or n + r even

Let t be a positive integer
Let H1, . . . , Ht be functions from Zk−1

p to Zp

Define

g(x) = pt−1fk(x) +
t∑

i=1

Hi(f1(x), . . . , fk−1(x))pi−1

Then,

THEOREM

If f is a generalized plateaued function with amplitude p
n+r

2 the g is a
generalized plateaued function with amplitude p

n+r
2 .
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Generalized plateaued functions from other ones

Let f : Vn → Zpk

Suppose p is odd or n + r even

Let t be a positive integer
Let H1, . . . , Ht be functions from Zk−1

p to Zp

Define

g(x) = pt−1fk(x) +
t∑

i=1

Hi(f1(x), . . . , fk−1(x))pi−1

Proof.
It is a direct consequence of the fact that at most one sum
Su(a) =

∑
x∈Wu

ζ
f (x)−a·x
p is non zero and whose modulus is equal to

p
n+r

2 :

Hg(a) =
∑
x∈Vn

ζ
g(x)
pt ζ−a·x

p =
∑

u∈Zk−1
p

ζ
∑t

i=1 Hi(u)pi−1

pt Su(a) = ζ
∑t

i=1 Hi(u)pi−1

pt Su(a?)

for some a? ∈ Vn.
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Generalized plateaued functions from other ones
in lower dimension

Let f : Vn → Z2k

Suppose p = 2, k ≥ 3 and n + r odd

Define g : Zn
2 × Z2 → Z2k as

g(x, z) = (fk(x) + zfk−1(x))2k−1 + z2k−2 +

k−2∑
i=1

fi(x)2i−1

ζ
f (x)
2k = (−1)fk(x) ζ

fk−1(x)
4 ζ

∑k−2
i=1 fi(x)2i−1

2k ,

ζ
g(x,0)
2k = ζ

−fk−1(x)
4 ζ

f (x)
2k and ζ

g(x,1)
2k = (−1)fk−1(x)ζ

1−fk−1(x)
4 ζ

f (x)
2k

THEOREM

f is a generalized plateaued function with amplitude 2
n+r

2 if and only if g
is a generalized plateaued function with amplitude 2

n+r
2 .
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Generalized plateaued functions from other ones
in lower dimension

Let f : Vn → Z2k

Suppose p = 2, k ≥ 3 and n + r even
Define g : Zn

2 × Z2 → Z2t as

g(x, z) = 2t−1fk(x) +
t−1∑
i=1

Hi(f1(x), . . . , fk−1(x))2i−1

+ 2t−2zI(f1(x), . . . , fk−1(x))

where the Hi’s are maps from Zk−1
2 to Z2 and I : Zk−1

2 → Z4.
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Generalized plateaued functions from other ones
in lower dimension

Let f : Vn → Z2k

Observe that

ζ
g(x,0)
pt = ζ

h(x)
pt and ζ

g(x,1)
pt = ζ

I(f1(x),...,fk−1(x))
4 ζ

h(x)
pt .

where

h(x) = 2t−1fk(x) +
t∑

i=1

Hi(f1(x), . . . , fk−1(x))2i−1

Now, if I is equal to 0 or 2 ζ I(f1(x),...,fk−1(x))
4 ∈ {−1, 1} while, if it equal to 1

or 3, ζ I(f1(x),...,fk−1(x))
4 ∈ {−ζ4, ζ4}.
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Generalized plateaued functions from other ones
in lower dimension

Let f : Vn → Z2k

THEOREM

Suppose that f is a generalized plateaued function with amplitude p
n+r

2 .
Then

1 If I takes only the values 1 and 3, g is a generalized plateaued
function with amplitude p

n+r
2

2 If I takes only the values 0 and 2, g is a generalized plateaued
function with amplitude p

n+r+1
2

REMARK

If I can take three values then g cannot be plateaued.
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